alake Pt Ee ke ~ o e
= ry v 1 [

i FINAL/Ol APR 93 TO 31 MAR 94

STOCHASTIC LEARNING DYNAMICS AND NON-LINEAR ﬁ' B
. DIMENSION REDUCTION ;
o L 2304/Hs
| F49620-93-1-0253

: PROFESSOR TODD LEEPI L e N i 3T e T L S S N R T Ty

- OREGON GRADUATE INSTITUTE OF SCIENCE & 1ECHNOLOGY
f DEPARTMENT OF COMPUTER SCIENCE & TECHNOLOGY
. P.0.BOX 9100

§ PORTLAND, OR 97291-1000 :

L AFOSR/NM —
! 110 DUNCAN AVE, SUTE B115

. BOLLING AFB DC 20332-0001 a 533 [J Lo

: L EC

§ F49620-93-1-0253
g HE E ik i
'f.ARR 0411995

f APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

; This reports cover research activity under the grant in place from April 1993
. through March 1994. Our research addressed algorithms and theory for stochastic
f learning, non-Tlinear extensions of principal component analysis (PCA) for
_ dimension-reduction, network pruning, and methods to incorporate desired _
! invariances into learning. -
; P4, SUBJECT TERMS i 15. NUMBER OF PAGES
16, PRICE COOBE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UIMITATION OF ABSTRACT
OF REPORT CF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED } UNCLASSIFIED SAR(SAME AS REPORT )

P
NSM 7540072535500 ey
P [T




FAallmarimnmlamalc:

'
i
v
'
t

OONSOING/Vionilorning Agency

mber. (If known)

o

Block 11. Supplementary Notes. Enter
information notincluded elsewhere such as:
Prepared in cooperation with...; Trans. of .: Tobe
publishedin.... Whenareportisrevised, incude
astatement whether the new report supersedes
orsuppiements the older report.

i
Sy S S S
B = N <
Sza

AT At A A

T
i

Limitation of Abstract. Tnisblock must
be completed to assign a limitation to the

Gstract. Entereither UL (unlimited) or SAR (same
sr rt). Anentryin this block is necessary if
the abstractisto belimited. {fblank, the abstract
sumed to be unlimited.




-3

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.




Stochastic Learning Dynamics and
Non-Linear Dimension Reduction

Final Report for AFOSR Grant
F'49620-93-1-0253

Todd K. Leen, Associate Professor
Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology

P.O. Box 91000
Portland, OR 97291-1000

tleendose ogr edu

October 12, 1894




Abstract

This report covers research activity under the grant in place fromm April 1993
through March 1994, Our research addressed algorithms and theory for stochastic
learning, non-linear extensions of principal cornponent analysis (PCA) for dimension-
reduction, network pruning, and methods to incorporate desired invariances into learn-

ng.

In stochastic lFarnmg we exterded and refined theoretical analysis developed prior
to the grant period [1, 2, for example], focusing on asymptotic behavior in order to
dev lop algorithms that improve late-time convergence rates. The resulting algorithms
medify stochastic gradient merhods by irmplicitly incorperating information about cost
f‘r.lnCT"”"x curvature, without cornputing large Hessian matrices {3, 4).

Our algorithms for dimension reduction extend traditional PCA by developing nen-
linzar data models. Our algorithms build locally linear models. The advantages over
PCA are more accurate and compact data representations. The advantage over neural
net approaches is that our techniques can be several orders of magnitude quicker to
train. Under the present grant we improved the algorithms’ accuracy, exercised them
on 2 broader range of data {including speech and image data), and began to relate our
algorithms to Gaussxan mixture models and use them for classification [5, 6.

r work on network pruning introduced a fast algorithm for removing excess de-
grees off eedorn. Like all regularization techniques the aim is to reduce model variance
at the cost of bizs to improve performance on out of sample dara. Network Drumn:>
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Our most recent work establishes a correspondence between two methods for in-

corporating invariances into pattern recognition. Ideally pattern recognition machines
provide constant output when the inputs are trensformed under a group of desired
invariances (e.g. translational and rotational invariance in machine vision). Two
methods to achisve this (there are others) are i) enhancing the training data to in-
clude examples of inputs transformed by elements of the group, while leaving the
corresponding targets unchanged, and ii) adding to the cost function a regularization
term that penalizes changes in the output when the input is transformed under the
group. Our work relates the two appreaches, showing precisely the sense in which the
regularized cost function approximates the result of adding transformed examples to

the training data (3]
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Objectives

Below we list the objectives for the research areas summarized in the abstract:

1.1

Stochastic Learning

Refine the theoretical treatment to avoid the diffusion approximation of the ear-
lier work. This has been accomplished by developing a perturbation expansion
for the appropriate master equation and relating this to van Kampen’s systemn
size expansion [9].

Extend the analysis to algorithms with learning rate annealing. To achieve con-
vergence (in mean square or with probability one), stochastic gradient algorithms
typically employ learning rate, or gain, schedules that behave asymptotically as
poft with t the iteration nurnber, and pg the initial learning rate. For such sched-
nles the rate at which the logarithm of the squared weight error decays appears
to be bounded below by 1/t. This optimal rate is achieved if pg > pery where
terir 1s derermined by the Hessian of the cost function at the minirmum.

We extended our analysis to such learning rate schedules and reproduced known
results on asymptotic convergence rates and distributions.

Extend the treatment of asymptotics to stochastic gradient descent with mornen-
tum. The motivation for this was to develop algorithms that insure the optimal
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Non-Linear Data Modeling

Further develop our locally-linear dimension reduction algorithms to enhance the
accuracy of the representations cbiained.

Exercise the algori.thms on a broader range of data (both speech and image data)
for cornparison with PCA and neural-net-based approaches.

The results of these studies were published in [3].

1.3

Relate the locally linear models to parametric distributions, in particular Gaus-
stan mixture models, and extend their use from dimension reduction to classifi-
cation. The results of this work will appear in [6].

Network Pruning

Make use of the correlation in node activities to prune effzctive degrees of freedom
from networks. This technique was motivated by the desire to prune models
quickly, and wirhout computation of large Hesslan matrices.

This work was published in [7] and was cne of fewer than %6 of the submitted
papers chosen for oral presentation at the 1993 Neural Information Processing
Systerns conference. The technique has been incorporated into algorithms for
tirne-series prediction in the financial marketplace.
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1.4 Invariances in Learning

o Develop the correspondence between data set enhancement, and regularization
[10, for example}, or "hints” (11, for example] as means to provide invariance in
learning machines.

This work has been accepted for publication in Neural Computation, and will be
presented at the 1994 NIPS conference [8].
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Quantitative Performance Measures

Publications in Journals - 2

{a) Leen, T.K., A Coordinate-Independent Center Manifold Reduction, Physics
Letters, A-174, 89-93, 1993

(b) Leen, T.K., Distortions and Regularization in Pattern Recognition, Neural
Computation, to appear.

Publications in Conference Proceedings - 6

{a) Orr, GB. and Leen, T.K.: Mormentum and Optimal Stochastic Search, in
FProczzdings of the 1995 Connsctionist Models Summer School, M.C. Mozer,
P Srmelensky. D.S. Touretzky, J.L. Elman and A.S. Weigend (eds.), Erlbaurn
Assoclates, 1993,

{b) Leen, T.K. and Orr G.B.: Mornenturmn and Optimal Stochastic Search, in
J.D. Cowan, G. Tesauro and J. Alspector (eds.), Advances in Neural Infor-
matien Processing Systems, 6, Morgan Kauffman Publishers, 1991

(¢) Leen, T K. and Kambhatla, N.: Fast Non-Linear Dimension Reduction, in
J.D. Cowan, G. Tesauro and J. Alspector (eds.), Advances in Neural Infor-
mation Processing Systems, 6, Morgan Kauffman Publishers, 1994.

(d) Levin, A.U. and Leen, T.K:: Fest Pruning Using Principal Components,
in J.D. Cowan, G. Tesauro and J. Alspector (eds.), Advances in Neural

This paper was one of 6% of the subrmissions chosen for oral presentation
at the 1953 NIPS conference
(e} Rambharla, N and Leen, T.K.: Classifving with Ganssian Mixtures, Cius-
ters, and Subspaces, Advances i Neural Information Processing Systems, 7,
1o appear.
f) Leen, T.K.: From Data Distributions to Regularization in Invariant Learn-
ing, Advances in Neural Information Processing Systems, 7, to appear.
Journal article in preparation:
(a) Leen, T.K., Orr, G.B, and Moody J.E.: Ensemble Theory of Stochastic
Learning.
Books or book chapters - 0
Graduate students supported - Nanda Kambhatla and Genvieve Orr. Both are
expected to complete the Ph.D. by June, 1995, (Partial support for the PI and
students is from a grant from the Electric Power Research Institute. The AFOSR
grant supported one graduate student full tirme.).
Postdocroral associates supported - 0
External honors
ta) The PI served as theory program co-chair for the 1993 Neural Information
Processing Systerns conference.
(b) The Pl is currently serving as Workshops Chair for the 1994 Neural Infor-
mation Processing Systems conference.
(c) The PI was promoted to Associate Professor in July 1993
(d) The PI was recently invited to join the editorial board of Neural Computa-

tion.
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3 Accomplishments

We are engaged in research in two primary areas: stochastic learning, and non-linear
data modeling and dimension reduction. Additional work on rmodel pruning and learn-
ing inveriances was supported under the grant and is discussed in this report. Our
work is reported in the NIPS 1993 conference proceedings [4, 5, 7] and in the upcorming
NIPS 1994 conference [5, 8]. Some of the work on stochastic learning also appears 1n
the Proceedings of the 1993 Connectionist Model Surnmer School [3]. The work on
network pruning was also presented at the NATO Workshop on Statistics and Neural
Netwerks [12]. In addition to my primary work discussed here, during the term of the
grant [ published an article in Physics Lettzrs cutlining a new technique for computing

bifurcations of dynarmical systems [13].

3.1 Stochastic Learning

Since the original submission we have focused our work on stochastic learning in two
areas. The first is directed at overcoming the limitations of the diffusion approximation.
Towards this end we developed a perturbation expansion for solutions of the Kramers-
Moyal equation. Qur perturbation expansion provides the probability density as a
power series in the learning rate p. Though independently developed. the perturbation
expansion is intimately linked to Van Kampen's system size expansion [ ]

The secornd arza focuses on asymptotic {late-time) behavier of algsorirhms
es p{t) = pg/t. We are deveicping algenithms rhar use an aa’apz‘u,ve
paramztzr help achleve neariv cprimal ccn\"“g“ncC rate. Qur algorithm
us methods as 1t doos not reguire estirnates of the cigenvatue spee-
as does Fablan's [14] zppreach; nzivher dc-f‘ the algerithm relv
xiliary statistic, as dees the approach developed by Darken and

Perturbation Expansion

In [2] we gave an equilibrium solution for the LMS algorithm obtained in the diffusion
approximation, and showed its validity for small learning rates. In order to obtain
more accurate equilibrium solutions, we have developed a perturbative expansion of
solutions to the Kramers-Moyal equation! The latter contains all the dynamics of the
probability density (we refer the reader to the original proposal).

Periurbation techniques, familiar from classical and quantum physics, enable one to
constrict approximate solutions to intractable problems that are similar to problems
that can be solved in closed form. Here we will develop a perturbation expansion
for soluticns to the forward Kramers-Moval equation. We limit our discussion to the
equilibriurn density for the LMS algerithm, thou?h the technique extends to other
problems, and to transient phenomena as well
tationary densities for the I\ramers-I\IO}al equations are solutions to

-

o / \',‘ m 'Ali
Z Z c _ {(H;. Hj, .. H)), P(w)} =Lk P(w) =

C—h.ujl f’w‘,‘: oL U;“'J"
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1This work is included in a long journal manuscript under preparation.




This 1s not solvable in closed form. The idea behind the perturbation tech-
nique 1s to write both the operator Ly sy and the stationary solution P as a
power series in a small parameter, and then to solve the resulting expression
order-by-order in this parameter. Here, the naturally occurring perturbation
parameter Is the learning rate u.

Schematically, the method proceeds as follows. We rewrite the operator Ly s

as
Ly = wl(Lo+ ply + °La 4 ., (2)

where the L, will be made explicit below. Next we expand P, as
P, = PO 4 o pW 4 2P 4 (3)

where the PU are to be determin=d. Now, we substitute (2) and (3) into (1) to

obtain

pLo P +
uf(L]p(O) 4 LOP“)) +
P LPO 4 L PO L L PEY L =0 (4)
In order for (4) to hold for arbitrary 4, the coefficients of each power of 4 must
separately vanish. Thus we chiain the s2r of zquations
Lo PC‘ = U
L.ptt — _ 5 plo
Lo P = — (L P 4 Ly PUY erc ()

The strategy is to successively solve each equation in (5). The key is to obtain
a representation for Lg sy such that Ly is an operator with a known complete set
of eigenfunctions. Each of the P! is then expanded in terms of the eigenfunctions
of Lg. P is simply the kernel of Lg.

Let us assume that we have such a representation for Lq with eigenvalues — X
and eigenfunctions F)

Lo Fy = =AFy . (€)
The adjoint of L;. denoted L;[, has eigenvalues —\ and eigenfunctions Gy
G, = <26, (7)

It 1s easy to show that the two sets of eigenfunctions can be chosen to be bi-

orthogonal

/dw Gulw) Filw) = (Gu.Fa)= 6y - (8)

Finally, given these basis eigenfunctions, the P! that satisfy (5) can be ex-

panded as




P(O) = FQ (9)

: 1
Pl =y Y (Gr L P9 )Fy (10)
Az0 7
o 1 ¢
P = \};O T [(G\ LP® )+ (G L PY)} By ete (11)

having used eigenequations (6) and the bi-orthogonality relation (8).
WWe have applied the technique outlined above to compute equilibrium den-
sitizs for the LMS algorithm with targets generated by a noisy teacher neuron.

(’b

e denote the displacement from the optimal welght w. by v = w — w.. It s
p g A
convenient to make the change of variables

v:y\//:c; | (1

where p is the learning rate and ¢? is the variance of the teacher noise.
In the y coordinates, the first two operators in (2) are

8]
~—

3 Bl - al ~ 1
Ly = =R (187 +167y+3})
3 4
where R 1s the 1“»put correlation. Note that Lo corresponds to an Ornsteln-

Uhlenbeck process. Its eigenfunctions are Gaussians multiplied by Hermite poly-

nomials. The first two P are
plol =
3 :
PY = ZR{-1+42y7) P9
4
A graphical comparison shows that the perturbative solutions are superior to

those obtained from the Fokker-Planck equation. In Figure 1 we compare the
Fokker-Planck, perturbative and experimentally derived densities for 1-D LMS.

Figure 1. Simulated (dashed), Fokker-Planck {dotted), and perturbative (solid)
den:mes for 1-D LMS with gaussian inputs (g = 0.05, 0% =1, and R = 4). a)
-order: P b) 1¥-order: P 4 p P,

oo




The perturbation solutions have been carried to higher order and applied to
multidimensional problems as well.

Our perturbation technique is intimately linked to Van Kampen’s system
size expansion (8] for the Kramers-Moyal equation. To apply Van Kampen's
xpansion to neural net learning, one writes the weight error v as the sum of

€
deterministic plus fluctuation pieces

v=0 4+ Juy . (13)

The deterministic piece 9 evolves by descent along the average or true gradient,
approaching zero exponentially. At late times, only the dynamics of the fluctu-
ations y remain. These are described to lowest order by Ly (and this is what
Van Kampen treats). Our perturbation expansion extends the description to

arbitrary order.

Asymptotics and Optimal Convergence

Learning rate schedules of the form u = g/t give rise to weight vector sequences
that converge in mean square to local optima w.. The asymptotic rate of con-
vergence 1s conveniently characterized by the expected squared weight error {or

miszdjustment) E{v|*] = E{lw — «.]7] It is well known [15, 16, and refer-
[STRTRE Iu‘-u:xilj that the convel igeiite rate NC SR =nds on whether Ho is ‘“*6"1‘ than
the critical valus )
1 /
_ 14
He = 2 k;-x)

where A, 1s the smallest eigenvalue of the cost function’s Hessian evaluated at
w.. If g > p then the misadjustment falls off asymptotically as 1/¢, whereas if
po < pe the misadjustment falls off slower than 1/t.

To achieve the optimal rate, one must estimate p, and adjust yg to be larger
(o = 1/Amia Is optimal). Fabian [14] estimates the Hessian during the op-
timization, and uses the estimate to readjust pg. This is clearly not feasible
for high-dimensional optimization problems. Darken and Moody [15] measure a
statistic that characterizes the roughness of trajectories, and use the time evolu-
tion of this statistic to adjust po. This approach, though less storage intensive
than estimating the Hessian’s eigenvalue spectrum, requires computation not
central to the search process.

We are proposing an alternative solution based on stochastic gradient descent
with momentum. Using the Kramers-Moyval expansion we have rederived the
classic results on convergence rates (and related results on asymptotic normality)
and extended them to stochastic gradient descent with momentum [4, 3]. The
analysis shows that at late times, learning is governed by an effective learning
rate p

Heff = 1-3 (15)

where 3 1s the coefficient of the momentum term.




Adaptive Momentum Improves Convergence

Based on our work on asymptotic convergence with momentum, we have devised
an algorithm that forcest the expected squared misadjustment E [[v[*] to fall off
nearly as 1/t at late times. The new algorithm does not involve estimating Hes-
sian and its eigenspectrum, nor does it involve calculating an auxiliary statistic,
nor does it involve setting po. Instead the momentum parameter J is adapted
on-line.

For simplicity, consider momentum gradient descent in 1-D. Based on the crit-
ical value for the learning rate (14) and the effective learning rate with momen-
tum {13), it is clear that 1f the momentum coefficient were set to B=1-uy R (R

“

the Hessian) then we would achieve the optimal convergence rate B [|w —w.|?] o
1/t

-Of course we do not know R, but it can be estimated on-line. For LMS,
R = E[X X7] and a convenient estimate is R = X, XT. For bounded inputs,
one can show that an algorithm based on this choice achieves the optimal 1/t
CONVErgence rate.

Figure 2 shows the results of our adaptive momentum algorithm on a 2-D LMS
problem. The plots show, on a log-log scale, the expected squared misadjustment
(computed {rom an ensemble of 1000 networks) as a function of time. Optimal
cenvergence with EHZ'!?] ~ 1/t corresponds to <‘op~ -1 on these curves. The

correlation eigenvalues for the input data are Ay = 04, Ay = 4.0, s0 o = 1.25
The plor on the left shows the convergence of <tandard LMS with learning rate
poft tor the three mmitial rates yg = {1.5.1.0.0. 253}, Only the curve Cohe:w,_u:‘ing
to ug = 1.5 exhibits the optimal convergence rate. The plot on the right shows

the results with adaptive momentum. Notice that regardless of po, at 1 te times
all the curves exhibit the optimal convergence rate.

i+
!
-
(o]
w
=

— Log[{]
2 25 3 35 4 45 5 2 25 3 35 4 45

Figure 2 Expected squared misadjustment for an ensernble of 1000 LMS net-
works  Correlation eigenvalues Ay = 0.4, Ay = 4.0. LEFT - no momenturn,

RIGHT - adaptive momenturn.

Similar results are obtained for problems with larger condition numbers. Fig-
ure 3 shows simulation results without momentum, and with adaptive momentum
for condition number of = 10*. In this simulation, the annealing and adaptive
momentum are started at late times. Without momentum, the convergence 1s
stalled - at late times the slove of the error curve 1s essentially zero. With adap-
tive momentum. the asymptotic slope is = —0.66. Although this is not the

10




theoretical optimal value (slope —1), the improvement in convergence, relative

to to no momentum Is substantial.
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Figure 3 Sirmulation of 4-D LMS for condition number A, . /... = 10%
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Further work on these algorithms integrates zutomatic passage from con-
stant learning rate to annealing. We are currently extending the algorithm to

non-hinzar cpuimization problems and will start executing it on large speech-
£ kY

recoznition networks.

3.2 Non-Linear Dimension Reduction

This work 1s aimed at developing algorithms for data modeling and compression
that perform better than linear techniques, and are fast to train. Initially we
have approached the problem of data dimension reduction. Kramer [17], DeMers
[18], and Oja [19] have proposed the use of 3-layer feed-forward auto-associative
networks with a bottle-neck middle layer to perform non-linear dimension reduc-
tion. These networks have input and output layers of size equal to the dimension
of the data. There are three layers of hidden nodes. The number of nodes in
the second hidden layer 1s equal to the dimension of the encoded signal. The
networks are trained to perform an identity transformation on the input data.
After training, the low-dimensional encoding is extracted from the activities of
the nodes in the second hidden layers. Thess networks are able to provide more
accurate encodings than the principal component analysis (PCA). However they
are slow to train and are prone to trapping in poor solutions.

As described 1n the original proposal, we have developed an algorithm that
uses local PCA to reduce data dimension. The algorithm partitions the space
using a vector quantizer (VQ) and then performs a PCA projection within each
of the Voronoi cells of the partition. The PCA captures the local structure of
the data, while the distribution of Voronoi cells captures the global, non-linear

structure of the data.
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We originally exercised the algorithm on speech data and compared its per-
formance with global PCA. and with the global non-linear model implemented
by a 5-layer auto-associative network [20]. The original data consists of 32 DFT
coefficients (spanning the frequency range 0-4kHz) of the monothongal vowels
extracted from continuous speech. The goal was to reduce the data to a low
(two- or three-dimensional) representation. The figure of merit for these ex-
periments was the error incurred in reconstructing the original signal from the
dimension-reduced representation.

Both the neural network and the local-linear technique provided lower recon-
struction error than DCA. The local lincar technique provided roughly a 40%
decrease in error relative to the neural net, and trained up to an order of mag-
nitude faster [20].

Under the present grant, we exercised the algorithm on image data, again
comparing its performance with a neural network, and with PCA [21]. In those
experiments, we used the image database developed by DeMers and Cottrell,
comparing our results with their study of dimension reduction with ncural net-
works [22]. The original 64x64 images were first encoded into 50 principal com-
ponents. This 50-dimensional representation was then reduced to 5 dimensions
using either of the nonlinear techniques. A linear reduction to 5 dimensions was
provided by retaining only the leading 5 principal components. As with the ex-
periments on speech data both non-linear techniques outperformed PCA. Our
incaiiy linear algorithm autperformed the nenral network [21]. For ex -m*.I Sle, one
of the neural network models achieved a normalized reconstruction error? of 0.07
ar 1,580 cpu ards to train 2. A comparable locally linsar model
{normalized error 0.0698) required only 30 cpu seconds to train.

Sample results of the image reconstruction are shown in figure 3 The 1mages
clearly portray both the superiority of the non-linear techniques over PCA, and
the superiority of our locally linear technique over the neural network (mouth

shape is especially revealing in this series).

ge3

Figurs 3: Two representative irnages: Left to right - Original 50-PC image, reconstruction

from 5-D encodings: PCA, Best neural network model, locally linear model with 10 partitions,

locally linear model with 50 partitions.

2The error measure is the rmean squared reconstruction error divided by the raean squared signal strength.
3Using a five-layer autoassociative network, DeMers and Cottrell [22] obtain an normalized reconstruction

error of 0.1217 for the same data.This is comparable to our results.

12
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Coupling the Partition to the Projection

The algorithm discussed above, though very effective, 1s not optimal. The algo-
rithm first partitions the input space into disjoint Voronoi cells using a standard
VQ algorithm (e.g. LBG* or competitive learning). After this partition is built,
the local PCA projection is performed within each cell of the partition. Thus
the mnitial partitioning is independent of the projection that follows.

One would expect to obtain lower distortion in the final representation if the
partition was built in a manner that was determined in part by the projection.
Indeed the two steps can be coupled by building the partition so as to minimize
the reconstruction error after the PCA projeciion. Either gradient descent or
LBG-like algorithms can be built using this distortion measure. We have coded
such algorithms and 1nitial experiments indicate a 10-20% reduction in error rela-
tive to the original algorithm in which the partition is constructed independently
of the projection. More detail is available in [3].

3.3 Network Pruning

Fitting mode! complexity to data is one of the outstanding problems in statisti-
cal model building. Rich models, those with many parameters, allow close fits to
sample data, but may perform badly on out-of-sample data (so-called general-
1zatlon perlormance). Lo counter tis over-ntiing, various techniques have been

mrroduced thar decrease model variance a2t the expense of model bias in order
to lmprove pericrmance on out-of-sample data

o Regularization schemes (e.g. weight decay) add a penalty term to the cost
function. The proper coefficient for this term 1s not known a priori, so one
must perform several optimizations with different values; a cumbersome
process.

o Weight-elimination schemes (e.g. optimal brain damage [24] and its deriva-
tive optimal brain surgery [25]) involve traning large nets and then removing
the weights that least affect the training error. These techniques require
calculating the Hessian or some approximation to it. Calculating the full
Hessian 1s impractical for large nets, and the approximations are often poor.

o Early stopping monitors the error on a validation set and halts learning
when this error starts to increase.

We have developed an alternative technique that uses principal component
analysis (PCAJ in conjunction with supervised learning. Briefly stated, the tech-
nique uses PCA to decorrelate node activities and then eliminates the (decor-
related) degrees of freedom that have the least effect on the output error (least
bias). The technique is fast to implement and achieves good results on both
linear and non-linear models. Our paper, delivered as an oral presentation at

*The Linde-Buzo-Gray algorithm [23, and references therein] is the commonly-used batch-mode algorithm

for designing a vector quantizer.
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the 1993 NIPS meeting, gives more details of the algorithm implementation and

results on several sample problems.

3.4 Learning Invariances

In machine learning one sometimes wants to incorporate invariances into the
function learned. Our knowledge of the problem dictates that the machine out-
puts cught to remain constant when its Inputs are transformed under a set of
operations G° In character recognition, for example, we want the outputs to be
invariant under shifts and small rotations of the input image.

There are several ways to achieve this invariance

1. The invariance can be built into the input representation. Inimage process-
ing the use of Fourier amplitude coefficients, rather than pixel intensities,
provides invariance under translations.
In neural networks, the invariance can be hard-wired by weight sharing in
the case of summation nodes [26] or by constraints similar to weight sharing
in higher-order nodes [27].
3. One can enhance the training ensemble by adding examples of inputs trans-

formed under the desired invariance group, while maintaining the same tar-

=ts as {or the raw data.

[SV]

E‘ L
4. One can 224 to the cost functizn a regularizer that penzlizes changss in the
output when the input is transformed by elements of the group (10, 11]
Intuitively one expects the approaches in 3 and 4 to be intimately linked.

This link is established by writing the probability distribution for the en-
hanced training set in terms of the original distribution and the distortions in-
troduced. These transformations, or distortions, of the inputs are carried out
by group elements g € G. For Lie groups®, the transformations are analytic

functions of parameters o € R*
r—=z1 = g(z; ), (16)
with the identity transformation corresponding to parameter value zero
r0) = . (17)

By adding distorted input examples we alter the original density p(z). We
characterize the frequency with which different distortions are represented in the
enhanced ensemble by a probability density over group parameters p(a). With
this density, the distribution for the distortion-enhanced input ensemble becomes

pl) = [ [dadrp(sz o) pla) pla)
//dadr §(r' - glr;a)) pla) plz) |

il

“We assurne that the set forrus a group.
®See for exarmnple [28]

14




where ¢(-) 1s the Dirac delta function.

Finally we impose that the targets remain unchanged when the inputs are
transformed according to (16) r.e., p(tjz') = p(t|z).

In this framework, the cost function for the distortion-enhanced training data
1s shown to be equivalent to the cost function for the original (untransformed)
data, plus a regularizer term.

For unbiased models, the regularizer 1s shown to reduce to a simple penalty
for vielation of the desired invariance:

Ep = /da p(a) /a’x plz) [f{z,w)— f(g(z;e);w) ] (18)

Our publications [8] contain further detail.

—
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